Napjainkban a mesterséges intelligencia alkalmazását tartják a digitális transzformáció egyik fő hajtóerejének, és ennek kapcsán az „AI Talent Gap” megfogalmazás is egyre gyakrabban tűnik fel. Felmerül a kérdés, hogy hol terem az „AI Talent”, hogyan fejleszthető és miképp illeszthető a jelenlegi vállalati kultúrába?
Verseny az AI szaktudásért
Az AI szaktudás rendkívül szerteágazó lehet a különböző iparági, vállalati digitális átalakulási programok specialitásai miatt. Meghatározóan a Machine Learning, a Symbolic Learning, a Big Data, a data science és a robotika területeit sorolhatjuk ide. Valamint a mindezek mögötti matematikai, analitikus összefüggések, illetve szoftverfejlesztési és programozási gyakorlatok halmazát (mint pl. Python, Java, Linux, C++, Hadoop, R, Spark, SAS).
Az AI alapfogalmak áttekintéséhez praktikus segítség az alábbi video:
A jól képzett szakemberekért, tehetségekért folytatott piaci verseny már az egyetemi padsorokban, illetve az akadémiai intézetekkel kötött képzési megállapodásokkal elkezdődik. A gyakorlattal rendelkező „iparági veteránok” ára pedig az egekben van.
A legnagyobb hype és kiemelkedő fizetések természetesen a FANG cégek (Facebook, Amazon/Apple, Netflix, Google) és társaik környékén tapasztalhatók. Ezen cégeknél sok esetben már 2017-ben is a 300 ezer dollárt meghaladó éves fizetési csomagokról beszéltek és korábban a sztár traderek-éhez hasonló keresési és kiválasztási folyamatokról lehetett hallani.
Mesterséges intelligencia és Big Data kisszótár
Artificial Intelligence / Mesterséges Intelligencia:
Big Data:
Big Data engineer:
Data scientist:
Machine Learning / Gépi tanulás:
Deep Learning / Neural networks:
A deep learning (gépi mélytanulás) a Neural Networks (neuronhálózatok) alkalmazásán alapszik, azokon a statisztikai modelleken, amelyeket 1943-ban Warren McCulloch és Walter Pitts alkotott meg a biológiai ideghálózatok mintájára.
Egymásba ágyazott neuronhálózatokat először 2006-ban használtak mélytanuló rendszerként és a modell matematikája 2012-ig csiszolódott, amikor a GPU-k kapacitásának kihasználásával igazi robbanás történt a deep learning alkalmazásában.
Jelenleg a legnagyobb tapasztalat és publikáció a deep learning-gel kapcsolatban a képfeldolgozás területén van, ahol a nagy számítási kapacitásával a Google jár az élen.
Az AI Talent fejlesztése
A KÜRT Akadémia évindító AI meetup-ja a témát képzésfejlesztési szempontból járta körül, hitet téve a mesterséges intelligencia vonatkozású szakmai továbbképzések szükségessége mellett. A magyar számítástechnikai oktatás történetét megnézve, ráadásul a mesterséges intelligencia jelentős hazai kutatási múlttal is rendelkezik.
Manapság mindenhol a Big Data és az Artificial Intelligence gyakorlati alkalmazásának előnyeiről lehet hallani, ami várhatóan jelentős mértékben alakítja át mindennapi életünket. Ahogy találóan megfogalmazásra került,
nem az lesz a kérdés pl. a banki marketingesek számára, hogy kiknek kell az adott hitelterméket reklámozni, hanem az, hogy ki fogja ezen hitelterméket a jövő héten a legnagyobb valószínűséggel igényelni.
Azonban a hírek arról is szólnak, hogy azon (tech) vállalatok, amelyek először mennek át az AI transzformáción, kegyetlen árversenyt indítottak a képzett szakemberekért. A munkaerőhiány a kisebb, feltörekvő fintech/regtech cégek, illetve hagyományos vállalatok lehetőségeit is behatárolhatja, így rohamosan felértékelődik a kognitív technológiákhoz kapcsolódó tudással rendelkező adatszakemberek képzése és megtartása.
A szervezeti agilitás kérdései
A PwC „Responsible AI” riportjában azt is kihangsúlyozzák, hogy a cégek már nemcsak a technológia szaktudást, hanem a digitális üzletfejlesztés és stratégia megvalósítás mindennapjaihoz a „másképp gondolkodás képességét” is keresik a jelöltekben.
A digitális transzformációs projektek során ez viszont kihívást hordozhat majd a jelenlegi szervezeti kultúra számára. Így ha a hagyományos szereplők szeretnék magukhoz csábítani és megtartani az AI tehetségeket, akkor várhatóan a szervezeti folyamatok gyökeréig is vissza kell nyúlniuk, ami felveti az agilis változás kérdését is.
Az agilitás mindig is a hatékonyságot és a változásra való képességet jelentette, ugyanakkor ahogy Kürti Tamás, a KÜRT Akadémia alapítója írja, mára
„megváltozott a változás is.”
A szervezeti agilitás lényeges ismérve lett a digitális transzformációs folyamatban levő vállalatoknak, menedzsment szinten képviselve azt, hogy
a legújabb technológiák sikeres alkalmazása, a szükséges talent pool-ok kialakítása, megtartása a szervezeti működésre kiható jelentősebb változtatást is generál.
A FinTechShow-n külön szekció keretében foglalkozunk azzal, hogyan alakíthatnak ki a hagyományos pénzügyi szolgáltatók „vagány szervezeti kultúrát„, hol tartanak a hazai pénzintézetek az agilis átalakulásban és miért nélkülözhetetlen a szervezeti kultúraváltás a digitális transzformáció során.